Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-Hydroxysalicylaldoxime

Peter A. Wood, ${ }^{\text {a }}$ R Ross S. Forgan, ${ }^{\text {a }}$ Simon Parsons, ${ }^{\text {a }}$ Elna Pidcock ${ }^{\text {b }}$ and Peter A. Tasker ${ }^{\text {a }}$

${ }^{\text {a }}$ School of Chemistry, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JJ, Scotland, and ${ }^{\text {b }}$ Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, England
Correspondence e-mail: p.a.wood@sms.ed.ac.uk

Received 12 April 2007; accepted 26 April 2007

Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$;
R factor $=0.035 ; w R$ factor $=0.117$; data-to-parameter ratio $=13.1$.

The structure of the title compound, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{3}$, is based on oximic hydrogen-bonded chains, which are linked together by further phenolic intermolecular hydrogen bonds that form an $R_{4}^{4}(14)$ ring motif.

Related literature

Salicylaldoximes without large side groups usually form hydrogen-bonded dimers [e.g. Cambridge Structural Database (Allen, 2002) refcodes SALOXM (Pfluger \& Harlow, 1973) and ABULIT (Xu et al., 2004)], whereas those bearing large substituents are generally found to form hydrogen-bonded chains [e.g. refcodes HEPKET10 (Koziol \& Kosturkiewicz, 1984) and HELBOP (Maurin, 1994)], as shown by Smith et al. (2003). In common with 3-fluorosalicylaldoxime (Wood et al., 2007) and salicylaldoxime-III (Wood et al., 2006), the structure of 3-hydroxysalicylaldoxime (present work) is an exception to this rule.

For related literature, see: Bernstein et al. (1995).

Experimental

> Crystal data
> $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{3}$
> $M_{r}=153.14$
> Monoclinic', $P 2_{1} / c$
> $a=13.4603(10) \AA$
> $b=3.7507(3) \AA$
> $c=14.8398(11) \AA$
> $\alpha=90^{\circ}$
> $\beta=114.531(5)^{\circ}$
$\gamma=90^{\circ}$
$V=681.57$ (9) \AA^{3}
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
$0.46 \times 0.13 \times 0.11 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2006)
$T_{\text {min }}=0.51, T_{\text {max }}=0.99$

8183 measured reflections 1424 independent reflections 904 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.029$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.117$
independent and constrained refinement
1424 reflections
109 parameters
$\Delta \rho_{\text {max }}=0.22$ e \AA^{-3}
$\Delta \rho_{\text {max }}=0.22 \mathrm{e}^{2} \AA_{\text {min }}=-0.15 \mathrm{e}^{-3}$

3 restraints

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 5^{\text {i }}$	0.87 (2)	1.95 (2)	2.7984 (18)	167 (3)
$\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{~N} 2$	0.89 (3)	1.85 (3)	2.651 (2)	148 (3)
$\mathrm{O} 6-\mathrm{H} 6 \cdots \mathrm{O} 1^{\text {ii }}$	0.81 (3)	2.16 (2)	2.8353 (18)	141 (3)

Data collection: SMART (Siemens, 1993); cell refinement: SAINT; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: CRYSTALS.

The authors thank the Cambridge Crystallographic Data Centre, the University of Edinburgh and the EPSRC for funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WK2053).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Brandenburg (2004). DIAMOND. Version 3.0. Crystal Impact GbR, Bonn, Germany. http://www.crystalimpact.com/diamond
Koziol, A. E. \& Kosturkiewicz, Z. (1984). Pol. J. Chem. 58, 569-575.
Maurin, J. K. (1994). Acta Cryst. C50, 1357-1359.
Pfluger, C. E. \& Harlow, R. L. (1973). Acta Cryst. B29, 2608-2609.
Sheldrick, G. M. (2006). SADABS. Version 2006/1. University of Göttingen, Germany.
Siemens (1993). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1995). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Smith, A. G., Tasker, P. A. \& White, D. J. (2003). Coord. Chem. Rev. 241, 61-85.
Wood, P. A., Forgan, R. S., Parsons, S., Pidcock, E. \& Tasker, P. A. (2006). Acta Cryst. E62, o3944-o3946.
Wood, P. A., Forgan, R. S., Parsons, S., Pidcock, E. \& Tasker, P. A. (2007). Acta Cryst. E63, o3132.
Xu, T., Li, L. \& Ji, H. (2004). Hecheng Hиaxиe, 12, 22-24. (In Chinese).

supplementary materials

3-Hydroxysalicylaldoxime

P. A. Wood, R. S. Forgan, S. Parsons, E. Pidcock and P. A. Tasker

Comment

3-Hydroxysalicylaldoxime (I) crystallizes with one molecule in the asymmetric unit in the space group $P 2_{1} / c$. The molecule forms an intramolecular phenolic $\mathrm{OH} \cdots \mathrm{N}$ hydrogen bond $[\mathrm{O} 5 \cdots \mathrm{~N} 2=2.651$ (2) \AA] (Figure 1) and an intermolecular oximic $\mathrm{OH} \cdots \mathrm{O}$ hydrogen bond $[\mathrm{O} 1 \cdots \mathrm{O} 5=2.798(2) \AA]$ with a neighbouring molecule related by the 2_{1} screw axis. These two interactions taken together form a secondary level $\mathrm{C}(5)$ chain running parallel to the crystallographic b axis (Figure 2). The molecules within the $\mathrm{C}(5)$ chain also interact with their next-but-one neighbours through $\pi-\pi$ stacking contacts which are related by a translation in the direction of the b axis. The inter-plane separation in these stacking interactions, using a calculated least squares mean plane from the phenyl carbons in one molecule and measuring the distances to the phenyl carbons in another molecule, is between 3.458 (2) and 3.471 (2) \AA and the dihedral angle between the two phenyl planes is 0° by symmetry.

Each chain interacts with a neighbouring chain through intermolecular $\mathrm{OH} \cdots \mathrm{O}$ hydrogen bonds $[\mathrm{O} 6 \cdots \mathrm{O} 1=2.835$ (2) \AA] related through the c-glide perpendicular to the b axis. These interactions taken with the oximic $\mathrm{OH} \cdots \mathrm{O}$ contacts and their symmetry equivalents form hydrogen bonded ring motifs around an inversion centre for which the graph-set descriptor is $R_{4}^{4}(14)$ (Bernstein et al., 1995). The hydrogen bonded rings connect the chains into slabs in the bc plane with the phenyl groups at the edges of the slabs (Figure 3). There are no hydrogen bonding interactions between the slabs and the only interactions are van der Waals contacts.

Experimental

All solvents and reagents were used as received from Aldrich and Fisher. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were obtained using a Bruker AC250 spectrometer at ambient temperature. Chemical shifts (δ) are reported in parts per million (p.p.m.) relative to internal standards. Fast atom bombardment mass spectrometry (FABMS) was carried out using a Kratos MS50TC spectrometer with a thioglycerol matrix. Analytical data was obtained from the University of St Andrews Microanalytical Service.
$\mathrm{KOH}(1.347 \mathrm{~g}, 20.4 \mathrm{mmol})$ and $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(1.418 \mathrm{~g}, 20.4 \mathrm{mmol})$ were dissolved in EtOH , mixed thoroughly and a white KCl precipitate removed by filtration. 3-Hydroxysalicylaldehyde ($2.500 \mathrm{~g}, 18.10 \mathrm{mmol}$) was added to the filtrate, and the mixture refluxed for 3 hr . The solvent was removed in vacuo, and the residue redissolved in CHCl_{3}, washed with water 3 times and dried over MgSO_{4}. The solvent was removed in vacuo to yield the crude product as a yellow powder which was then recrystallized from chloroform to give yellow needles ($2.371 \mathrm{~g}, 85.6 \%$). A yellow block suitable for x-ray diffraction was grown by slow evaporation of a hexane/chloroform solvent. (Anal. Calc. for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{3}: \mathrm{C}, 54.9 ; \mathrm{H}, 4.6 ; \mathrm{N}, 9.2$. Found: C, $54.9 ; \mathrm{H}, 4.3$; N, 9.1\%); ${ }^{1} \mathrm{H}$ NMR (250 MHz, MeOD): $\delta(\mathrm{H})$ (p.p.m.) $6.80(\mathrm{~m}, 3 \mathrm{H}, 3 x \mathrm{ArH}), 8.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCHN}) ;{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{MeOD}) \delta(\mathrm{C})($ p.p.m.) $118.0(1 \mathrm{C}$, aromatic CH$), 119.5(1 \mathrm{C}$, aromatic C-CHN), $121.0(1 \mathrm{C}$, aromatic CH$)$, $122.0(1 \mathrm{C}$, aromatic CH$), 146.5(1 \mathrm{C}$, aromatic C-OH), $152.5(1 \mathrm{C}, \operatorname{ArCHN})$; FABMS $m / z 154(\mathrm{MH})+, 48 \%$.

supplementary materials

Following data collection (see Table 1) an absorption correction was applied using the program $S A D A B S$. Tmax/Tmin is larger than calculated on the basis of the crystal dimensions. However, multi-scan procedures (such as $S A D A B S$) correct for all systematic errors that lead to disparities in the intensities of equivalent data. It is possible that the larger than expected range of transmission is accounted for by crystal decay or absorption by the mounting fibre.

Refinement

The hydrogen atoms were located in a Fourier difference map. The positional and isotropic displacement parameters were then refined subject to restraints $\left[\mathrm{C}-\mathrm{H}=0.93(2) \AA, \mathrm{O}-\mathrm{H}=0.82(2) \AA\right.$ and $U_{\mathrm{iso}}(\mathrm{H})=1.5 \mathrm{Ueq}(\mathrm{C}$ or O$\left.)\right]$. In subsequent cycles of least squares the H -atoms attached to C were constrained to ride on their parent atoms. $\mathrm{H} 1, \mathrm{H} 5$ and H 6 were refined subject to distance restraints equal to 0.84 (5) \AA.

Figures

Fig. 1. Molecular structure of I with probability ellipsoids drawn at the 50% level.

Fig. 2. H-bonded chain formation in the crystal structure of I.

3-Hydroxysalicylaldoxime

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{1} \mathrm{O}_{3}$

$$
Z=4
$$

Monoclinic', $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=13.4603(10) \AA$
Fig. 3. H-bonded ring motif in the crystal structure of I that connects the structural chains into slabs in the $b c$ plane. The extent of one such slab is shown.

$$
M_{r}=153.14
$$

$b=3.7507$ (3) \AA
$c=14.8398(11) \AA$
$\alpha=90^{\circ}$

$$
\begin{aligned}
& F_{000}=320 \\
& D_{\mathrm{x}}=1.492 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1756 \text { reflections } \\
& \theta=3-25^{\circ} \\
& \mu=0.12 \mathrm{~mm}^{-1} \\
& T=150 \mathrm{~K}
\end{aligned}
$$

$$
\begin{aligned}
& \beta=114.531(5)^{\circ} \\
& \gamma=90^{\circ} \\
& V=681.57(9) \AA^{3}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD area-detector diffractometer
Monochromator: graphite
$T=150 \mathrm{~K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2006)
$T_{\text {min }}=0.51, T_{\text {max }}=0.99$
8183 measured reflections
1424 independent reflections

Block, yellow
$0.46 \times 0.13 \times 0.11 \mathrm{~mm}$

904 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=26.6^{\circ}$
$\theta_{\text {min }}=2.8^{\circ}$
$h=-16 \rightarrow 16$
$k=-4 \rightarrow 4$
$l=-17 \rightarrow 18$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.117$
$S=0.99$
1424 reflections
109 parameters
3 restraints
Primary atom site location: structure-invariant direct methods
Hydrogen site location: geom/difmap (OH)
H atoms treated by a mixture of independent and constrained refinement
Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) $[w e i g h t]=1.0 /\left[\mathrm{A}_{0} * \mathrm{~T}_{0}(\mathrm{x})+\right.$ $\left.\left.\mathrm{A}_{1} * \mathrm{~T}_{1}(\mathrm{x}) \cdots+\mathrm{A}_{\mathrm{n}-1}\right]^{*} \mathrm{~T}_{\mathrm{n}-1}(\mathrm{x})\right]$
where A_{i} are the Chebychev coefficients listed below and $\mathrm{x}=F / F \max$ Method $=$ Robust Weighting (Prince, 1982) W $=[$ weight $] *[1-(\operatorname{delta} F / 6 *$ sig$\left.\mathrm{ma} F)^{2}\right]^{2} \mathrm{~A}_{\mathrm{i}}$ are: 51.183 .148 .919 .23 .34
Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
Watkin, D. J. (1994). Acta Cryst. A50, 411-437.
$(\Delta / \sigma)_{\max }=0.0001$
$\Delta \rho_{\max }=0.22 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.15 \mathrm{e} \AA^{-3}$
Extinction correction: none

Special details

Experimental. Used Oxford Cryosystems low temperature device. Data collection strategy optimized with COSMO.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}^{*} / U_{\text {eq }}$
O1	$0.44009(11)$	$0.2386(5)$	$0.06215(10)$	0.0333
N2	$0.39503(12)$	$0.3040(5)$	$0.13107(11)$	0.0266
C3	$0.30117(14)$	$0.4508(5)$	$0.08998(13)$	0.0258

C4	$0.23874(15)$	$0.5415(5)$	$0.14676(13)$	0.0240
C5	$0.28033(14)$	$0.4911(5)$	$0.24936(13)$	0.0226
O5	$0.38212(10)$	$0.3513(4)$	$0.30415(10)$	0.0277
C6	$0.21770(14)$	$0.5813(5)$	$0.30083(13)$	0.0241
O6	$0.25519(12)$	$0.5341(4)$	$0.40046(10)$	0.0335
C7	$0.11473(15)$	$0.7240(5)$	$0.25057(15)$	0.0272
C8	$0.07223(15)$	$0.7703(5)$	$0.14860(15)$	0.0279
C9	$0.13386(15)$	$0.6814(5)$	$0.09742(14)$	0.0276
H1	$0.501(2)$	$0.135(8)$	$0.099(2)$	0.0512^{*}
H3	0.2687	0.4989	0.0202	0.0300^{*}
H5	$0.410(2)$	$0.296(7)$	$0.261(2)$	0.0424^{*}
H6	$0.315(2)$	$0.444(8)$	$0.423(2)$	0.0511^{*}
H7	0.0735	0.7879	0.2870	0.0341^{*}
H8	0.0024	0.8643	0.1144	0.0319^{*}
H9	0.1071	0.7129	0.0287	0.0318^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0246(7)$	$0.0531(10)$	$0.0249(7)$	$0.0044(7)$	$0.0129(6)$	$0.0003(7)$
N2	$0.0258(8)$	$0.0353(10)$	$0.0224(8)$	$-0.0004(7)$	$0.0136(6)$	$-0.0014(7)$
C3	$0.0262(9)$	$0.0291(10)$	$0.0207(8)$	$-0.0015(8)$	$0.0084(7)$	$0.0015(7)$
C4	$0.0237(9)$	$0.0232(9)$	$0.0260(9)$	$-0.0023(7)$	$0.0112(7)$	$0.0000(7)$
C5	$0.0178(8)$	$0.0229(10)$	$0.0249(9)$	$-0.0022(7)$	$0.0065(7)$	$-0.0002(7)$
O5	$0.0201(6)$	$0.0395(9)$	$0.0225(6)$	$0.0029(6)$	$0.0078(5)$	$0.0002(6)$
C6	$0.0235(9)$	$0.0254(9)$	$0.0240(9)$	$-0.0029(8)$	$0.0104(7)$	$-0.0012(8)$
O6	$0.0288(7)$	$0.0516(10)$	$0.0210(7)$	$0.0063(7)$	$0.0111(6)$	$0.0014(7)$
C7	$0.0262(9)$	$0.0254(9)$	$0.0333(10)$	$-0.0018(8)$	$0.0156(8)$	$-0.0028(8)$
C8	$0.0206(9)$	$0.0267(10)$	$0.0335(10)$	$0.0038(8)$	$0.0085(8)$	$0.0021(8)$
C9	$0.0276(9)$	$0.0266(10)$	$0.0250(9)$	$0.0015(8)$	$0.0073(7)$	$0.0033(8)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 1-\mathrm{N} 2$	$1.4103(19)$
$\mathrm{O} 1-\mathrm{H} 1$	$0.87(3)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.277(2)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.456(2)$
$\mathrm{C} 3-\mathrm{H} 3$	0.959
$\mathrm{C} 4-\mathrm{C} 5$	$1.400(3)$
$\mathrm{C} 4-\mathrm{C} 9$	$1.395(3)$
$\mathrm{C} 5-\mathrm{O} 5$	$1.374(2)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.394(2)$
$\mathrm{N} 2-\mathrm{O} 1-\mathrm{H} 1$	$101.7(18)$
$\mathrm{O} 1-\mathrm{N} 2-\mathrm{C} 3$	$111.52(14)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	$121.25(16)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{H} 3$	120.9
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	117.8
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$122.11(17)$

$\mathrm{O} 5-\mathrm{H} 5$	$0.89(2)$
$\mathrm{C} 6-\mathrm{O} 6$	$1.361(2)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.380(3)$
$\mathrm{O} 6-\mathrm{H} 6$	$0.81(3)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.389(3)$
$\mathrm{C} 7-\mathrm{H} 7$	0.952
$\mathrm{C} 8-\mathrm{C} 9$	$1.378(3)$
$\mathrm{C} 8-\mathrm{H} 8$	0.932
$\mathrm{C} 9-\mathrm{H} 9$	0.938
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$119.86(17)$
$\mathrm{O} 6-\mathrm{C} 6-\mathrm{C} 7$	$118.27(16)$
$\mathrm{C} 6-\mathrm{O} 6-\mathrm{H} 6$	$111.2(19)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$120.29(17)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7$	118.8
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7$	120.9

sup-4

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9$	$119.06(16)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$120.02(18)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9$	$118.83(17)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8$	120.4
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 5$	$123.05(16)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8$	119.5
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$120.23(17)$	$\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 8$	$120.75(18)$
$\mathrm{O} 5-\mathrm{C} 5-\mathrm{C} 6$	$116.72(16)$	$\mathrm{C} 4-\mathrm{C} 9-\mathrm{H} 9$	117.8
C5-O5-H5	$106.0(17)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9$	121.4
C5-C6-O6	$121.87(17)$		

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.87(2)$	$1.95(2)$	$2.7984(18)$	$167(3)$
$\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{~N} 2$	$0.89(3)$	$1.85(3)$	$2.651(2)$	$148(3)$
$\mathrm{O} 6-\mathrm{H} 6 \cdots \mathrm{O}^{\mathrm{ii}}$	$0.81(3)$	$2.16(2)$	$2.8353(18)$	$141(3)$

Symmetry codes: (i) $-x+1, y-1 / 2,-z+1 / 2$; (ii) $x,-y+1 / 2, z+1 / 2$.

supplementary materials

Fig. 1

Fig. 2

supplementary materials

Fig. 3

